vignettes/multiregional_analysis.Rmd
multiregional_analysis.Rmd
Multi-Regional Input-Output (MRIO) analysis extends traditional
input-output analysis to capture economic interdependencies between
multiple regions or countries. The miom
class in the
fio
package implements the methodology described in Miller
& Blair (2009) for analyzing multi-regional economic systems.
This vignette demonstrates how to:
In a multi-regional system with regions and sectors per region, the total dimensions of the system are . The intermediate transactions matrix is partitioned as:
where represents intermediate flows from region to region .
Computations of the multi-regional Leontief inverse is the same from the single-region case:
where
is the multi-regional technical coefficients matrix. Therefore, the
multi-regional input-output class miom
is able to inherit
methods from the iom
class, implementing the additional
functionality needed for multi-regional analysis.
miom
CLASS: 2000 WORLD ECONOMY
EXAMPLE
The fio
package includes the world_2000
dataset, which contains real multi-regional input-output data for 26
countries and 23 sectors from the year 2000. This dataset was created
using element-by-element imports from Excel files with
import_element()
as demonstrated in the World
2000 script.
Letโs load and examine this real-world dataset:
# Load the built-in world_2000 dataset
world_2000 <- fio::world_2000
# Examine the structure
world_2000$n_countries
#> [1] 26
world_2000$n_sectors
#> [1] 23
nrow(world_2000$intermediate_transactions)
#> [1] 598
ncol(world_2000$intermediate_transactions)
#> [1] 598
# Show the countries and sectors
world_2000$countries
#> [1] "AUS" "AUT" "BEL" "BRA" "CAN" "CHN" "DEU" "DNK" "ESP" "FIN" "FRA" "GBR"
#> [13] "GRC" "HKG" "IND" "IRL" "ITA" "JPN" "KOR" "MEX" "NDL" "PRT" "SWE" "TWN"
#> [25] "USA" "ROW"
world_2000$sectors
#> [1] "Agriculture, Hunting, Forestry and Fishing"
#> [2] "Mining and Quarrying"
#> [3] "Food, Beverages and Tobacco"
#> [4] "Textiles, leather and footwear"
#> [5] "Pulp, paper, printing and publishing"
#> [6] "Coke, refined petroleum and nuclear fuel"
#> [7] "Chemicals and chemicals products"
#> [8] "Rubber and plastics"
#> [9] "Other non-metallic mineral"
#> [10] "Basic metals and fabricated metal"
#> [11] "Machinery"
#> [12] "Electrical and optical equipment"
#> [13] "Transport equipment"
#> [14] "Manufacturing, recycling"
#> [15] "Electricity, gas and water supply"
#> [16] "Construction"
#> [17] "Wholesale and retail trade"
#> [18] "Hotels and restaurants"
#> [19] "Transport and storage"
#> [20] "Post and telecommunications"
#> [21] "Financial intermediation"
#> [22] "Real state, renting and business activities"
#> [23] "Community, social and personal services"
# Show a small subset of transactions (first 6 countries x sectors)
knitr::kable(
world_2000$intermediate_transactions[1:6, 1:6],
digits = 0,
caption = "Sample of Intermediate Transactions (millions of dollars)"
)
AUS_Agriculture, Hunting, Forestry and Fishing | AUS_Mining and Quarrying | AUS_Food, Beverages and Tobacco | AUS_Textiles, leather and footwear | AUS_Pulp, paper, printing and publishing | AUS_Coke, refined petroleum and nuclear fuel | |
---|---|---|---|---|---|---|
AUS_Agriculture, Hunting, Forestry and Fishing | 2976 | 16 | 8128 | 538 | 163 | 0 |
AUS_Mining and Quarrying | 17 | 1881 | 117 | 11 | 34 | 3355 |
AUS_Food, Beverages and Tobacco | 796 | 33 | 3387 | 68 | 21 | 14 |
AUS_Textiles, leather and footwear | 25 | 15 | 54 | 565 | 29 | 6 |
AUS_Pulp, paper, printing and publishing | 92 | 75 | 834 | 56 | 2193 | 15 |
AUS_Coke, refined petroleum and nuclear fuel | 359 | 452 | 61 | 6 | 41 | 331 |
# Show total production for first few country-sectors
knitr::kable(
t(world_2000$total_production[1, 1:6]),
digits = 0,
caption = "Sample of Total Production (millions of dollars)"
)
AUS_Agriculture, Hunting, Forestry and Fishing | AUS_Mining and Quarrying | AUS_Food, Beverages and Tobacco | AUS_Textiles, leather and footwear | AUS_Pulp, paper, printing and publishing | AUS_Coke, refined petroleum and nuclear fuel |
---|---|---|---|---|---|
28170 | 35785 | 35716 | 5857 | 15198 | 9871 |
The intermediate transactions matrix shows the flows of goods and services between all country-sector combinations in the global economy. The values represent monetary flows in millions of dollars. Each element represents purchases of intermediate inputs from the supplying country-sector (columns) by the purchasing country-sector (rows). It captures the complete structure of intermediate transactions between 26 countries across 23 economic sectors, providing a comprehensive view of global economic interdependencies in the year 2000.
The miom
class computes several types of multipliers
following Miller & Blair (2009):
world_2000$compute_multiregional_multipliers()
# Show first 10 rows of multipliers for readability
knitr::kable(
world_2000$multiregional_multipliers[1:10, 1:10],
digits = 4,
caption = "Multi-Regional Multipliers (first 10 country-sectors)"
)
destination_country | destination_sector | destination_label | intra_regional_multiplier | spillover_multiplier | total_multiplier | multiplier_to_AUS | multiplier_to_AUT | multiplier_to_BEL | multiplier_to_BRA |
---|---|---|---|---|---|---|---|---|---|
AUS | Agriculture, Hunting, Forestry and Fishing | AUS_Agriculture, Hunting, Forestry and Fishing | 1.8179 | 0.2331 | 2.0510 | 1.8179 | 0.0012 | 0.0031 | 0.0019 |
AUS | Mining and Quarrying | AUS_Mining and Quarrying | 1.6935 | 0.2127 | 1.9061 | 1.6935 | 0.0011 | 0.0020 | 0.0012 |
AUS | Food, Beverages and Tobacco | AUS_Food, Beverages and Tobacco | 2.3286 | 0.2703 | 2.5990 | 2.3286 | 0.0015 | 0.0030 | 0.0027 |
AUS | Textiles, leather and footwear | AUS_Textiles, leather and footwear | 2.0626 | 0.4556 | 2.5181 | 2.0626 | 0.0025 | 0.0056 | 0.0029 |
AUS | Pulp, paper, printing and publishing | AUS_Pulp, paper, printing and publishing | 2.0275 | 0.3072 | 2.3347 | 2.0275 | 0.0022 | 0.0039 | 0.0024 |
AUS | Coke, refined petroleum and nuclear fuel | AUS_Coke, refined petroleum and nuclear fuel | 2.2922 | 0.4806 | 2.7728 | 2.2922 | 0.0018 | 0.0036 | 0.0021 |
AUS | Chemicals and chemicals products | AUS_Chemicals and chemicals products | 2.1035 | 0.5020 | 2.6055 | 2.1035 | 0.0024 | 0.0079 | 0.0035 |
AUS | Rubber and plastics | AUS_Rubber and plastics | 1.9421 | 0.4697 | 2.4118 | 1.9421 | 0.0023 | 0.0074 | 0.0031 |
AUS | Other non-metallic mineral | AUS_Other non-metallic mineral | 2.0107 | 0.3092 | 2.3199 | 2.0107 | 0.0017 | 0.0031 | 0.0022 |
AUS | Basic metals and fabricated metal | AUS_Basic metals and fabricated metal | 2.0796 | 0.3984 | 2.4779 | 2.0796 | 0.0022 | 0.0034 | 0.0023 |
The multipliers table shows several key measures for each country-sector combination:
# Find an interesting example - let's look at Brazil Agriculture -> to USA
bra_agr_index <- which(grepl("BRA.*Agriculture", world_2000$multiregional_multipliers$destination_label))[1]
bra_agr <- world_2000$multiregional_multipliers[bra_agr_index, ]
# Show key multiplier components
multiplier_cols <- c("destination_label", "intra_regional_multiplier", "spillover_multiplier", "total_multiplier", "multiplier_to_USA")
available_cols <- intersect(multiplier_cols, names(bra_agr))
knitr::kable(bra_agr[, available_cols],
digits = 4,
caption = "Example: Brazil Agriculture Multipliers"
)
destination_label | intra_regional_multiplier | spillover_multiplier | total_multiplier | multiplier_to_USA | |
---|---|---|---|---|---|
70 | BRA_Agriculture, Hunting, Forestry and Fishing | 1.6809 | 0.1691 | 1.85 | 0.0385 |
The multipliers reveal important insights about global economic linkages. The intra-regional multiplier shows the domestic effect within a country when one of its sectors receives a demand shock, while the spillover multiplier captures the total impact on all other countries.
Regional interdependence measures help understand the economic
integration between countries. The
get_regional_interdependence()
method computes several key
indicators:
interdependence <- world_2000$get_regional_interdependence()
knitr::kable(interdependence, digits = 4)
country | self_reliance | total_spillover_out | total_spillover_in | interdependence_index |
---|---|---|---|---|
AUS | 1.9685 | 0.3169 | 0.0065 | 0.1610 |
AUT | 1.6145 | 0.4901 | 0.0040 | 0.3035 |
BEL | 1.6499 | 0.7652 | 0.0111 | 0.4638 |
BRA | 1.9189 | 0.2328 | 0.0041 | 0.1213 |
CAN | 1.6504 | 0.4281 | 0.0076 | 0.2594 |
CHN | 2.3422 | 0.2868 | 0.0167 | 0.1224 |
DEU | 1.7501 | 0.4073 | 0.0461 | 0.2327 |
DNK | 1.5882 | 0.5337 | 0.0046 | 0.3360 |
ESP | 1.8727 | 0.4036 | 0.0128 | 0.2155 |
FIN | 1.8149 | 0.4446 | 0.0052 | 0.2450 |
FRA | 1.8701 | 0.3976 | 0.0259 | 0.2126 |
GBR | 1.8808 | 0.3553 | 0.0324 | 0.1889 |
GRC | 1.4505 | 0.4766 | 0.0008 | 0.3286 |
HKG | 1.4567 | 1.0297 | 0.0051 | 0.7069 |
IND | 1.9303 | 0.2934 | 0.0031 | 0.1520 |
IRL | 1.4736 | 0.7272 | 0.0035 | 0.4935 |
ITA | 1.9757 | 0.3414 | 0.0210 | 0.1728 |
JPN | 1.9283 | 0.1352 | 0.0270 | 0.0701 |
KOR | 1.9883 | 0.4363 | 0.0103 | 0.2194 |
MEX | 1.5625 | 0.3543 | 0.0026 | 0.2267 |
NDL | 1.5793 | 0.6539 | 0.0170 | 0.4141 |
PRT | 1.8133 | 0.5237 | 0.0018 | 0.2888 |
SWE | 1.7255 | 0.5044 | 0.0103 | 0.2923 |
TWN | 1.6760 | 0.5121 | 0.0073 | 0.3055 |
USA | 1.8780 | 0.1924 | 0.0656 | 0.1024 |
ROW | 1.7567 | 0.4076 | 0.0957 | 0.2320 |
The results show that CHN has the highest self-reliance (2.3422), indicating a more self-sufficient economy. Meanwhile, HKG has the highest interdependence index (0.7069), suggesting greater integration with other economies.
The miom
class allows extraction of bilateral trade
flows between any two countries using the
get_bilateral_trade()
method:
# Get bilateral trade flows
trade_flow1 <- world_2000$get_bilateral_trade("BRA", "USA")
knitr::kable(trade_flow1[1:10, 1:5],
digits = 2,
caption = paste("Trade flows from", "BRA", "to", "USA", "(first 10 buying sectors, first 5 supplying sectors)")
)
BRA_Agriculture, Hunting, Forestry and Fishing | BRA_Mining and Quarrying | BRA_Food, Beverages and Tobacco | BRA_Textiles, leather and footwear | BRA_Pulp, paper, printing and publishing | |
---|---|---|---|---|---|
USA_Agriculture, Hunting, Forestry and Fishing | 18.23 | 0.02 | 92.85 | 1.80 | 2.80 |
USA_Mining and Quarrying | 5.19 | 13.05 | 0.47 | 0.20 | 0.84 |
USA_Food, Beverages and Tobacco | 8.45 | 0.06 | 29.15 | 1.99 | 0.19 |
USA_Textiles, leather and footwear | 1.56 | 1.47 | 2.02 | 131.26 | 1.56 |
USA_Pulp, paper, printing and publishing | 0.44 | 2.22 | 15.41 | 8.80 | 111.75 |
USA_Coke, refined petroleum and nuclear fuel | 10.27 | 5.17 | 6.30 | 2.43 | 1.53 |
USA_Chemicals and chemicals products | 467.80 | 31.80 | 79.89 | 138.63 | 129.08 |
USA_Rubber and plastics | 3.79 | 3.62 | 20.65 | 5.88 | 9.43 |
USA_Other non-metallic mineral | 0.58 | 1.00 | 2.26 | 0.21 | 0.24 |
USA_Basic metals and fabricated metal | 2.62 | 11.05 | 13.40 | 1.16 | 4.23 |
trade_flow2 <- world_2000$get_bilateral_trade("USA", "BRA")
knitr::kable(trade_flow2[1:10, 1:5],
digits = 2,
caption = paste("Trade flows from", "USA", "to", "BRA", "(first 10 buying sectors, first 5 supplying sectors)")
)
USA_Agriculture, Hunting, Forestry and Fishing | USA_Mining and Quarrying | USA_Food, Beverages and Tobacco | USA_Textiles, leather and footwear | USA_Pulp, paper, printing and publishing | |
---|---|---|---|---|---|
BRA_Agriculture, Hunting, Forestry and Fishing | 91.70 | 0.08 | 211.27 | 4.86 | 6.39 |
BRA_Mining and Quarrying | 1.24 | 20.45 | 0.88 | 0.15 | 1.12 |
BRA_Food, Beverages and Tobacco | 22.36 | 0.12 | 145.10 | 2.35 | 1.80 |
BRA_Textiles, leather and footwear | 1.94 | 0.19 | 1.02 | 111.85 | 9.46 |
BRA_Pulp, paper, printing and publishing | 1.64 | 1.09 | 37.91 | 4.97 | 185.86 |
BRA_Coke, refined petroleum and nuclear fuel | 36.13 | 19.79 | 8.43 | 3.78 | 15.55 |
BRA_Chemicals and chemicals products | 44.36 | 12.97 | 18.40 | 52.28 | 48.02 |
BRA_Rubber and plastics | 1.99 | 1.11 | 15.42 | 1.57 | 5.05 |
BRA_Other non-metallic mineral | 0.36 | 3.31 | 12.77 | 2.27 | 1.04 |
BRA_Basic metals and fabricated metal | 7.96 | 31.28 | 87.30 | 11.21 | 58.69 |
These matrices show the intermediate goods flows from the origin country (columns) to the destination country (rows) by sector. The values represent the monetary flows of intermediate inputs used in production.
The spillover matrix provides a comprehensive view of how shocks in each country-sector affect all other country-sectors in the system:
spillover_matrix <- world_2000$get_spillover_matrix()
This matrix contains the complete set of multiplier effects. For example, we can examine how a shock to the US electrical sector affects manufacturing in other countries:
# Effects of a shock to US Electrical sector
electrical_effects <- spillover_matrix[grepl("*_Manufacturing, recycling", rownames(spillover_matrix)), "USA_Electrical and optical equipment"]
knitr::kable(
electrical_effects,
digits = 4,
caption = "Effects of a unit shock to US Electrical sector"
)
x | |
---|---|
AUS_Manufacturing, recycling | 0e+00 |
AUT_Manufacturing, recycling | 0e+00 |
BEL_Manufacturing, recycling | 1e-04 |
BRA_Manufacturing, recycling | 1e-04 |
CAN_Manufacturing, recycling | 1e-03 |
CHN_Manufacturing, recycling | 5e-04 |
DEU_Manufacturing, recycling | 1e-04 |
DNK_Manufacturing, recycling | 0e+00 |
ESP_Manufacturing, recycling | 1e-04 |
FIN_Manufacturing, recycling | 0e+00 |
FRA_Manufacturing, recycling | 2e-04 |
GBR_Manufacturing, recycling | 1e-04 |
GRC_Manufacturing, recycling | 0e+00 |
HKG_Manufacturing, recycling | 0e+00 |
IND_Manufacturing, recycling | 1e-04 |
IRL_Manufacturing, recycling | 0e+00 |
ITA_Manufacturing, recycling | 2e-04 |
JPN_Manufacturing, recycling | 3e-04 |
KOR_Manufacturing, recycling | 1e-04 |
MEX_Manufacturing, recycling | 3e-04 |
NDL_Manufacturing, recycling | 0e+00 |
PRT_Manufacturing, recycling | 0e+00 |
SWE_Manufacturing, recycling | 1e-04 |
TWN_Manufacturing, recycling | 1e-04 |
USA_Manufacturing, recycling | 0e+00 |
ROW_Manufacturing, recycling | 9e-04 |
These values show the output response in each foreign country-sector to a unit shock in USA Electrical and optical equipment.
Net spillover effects reveal asymmetric economic relationships between countries. Positive values indicate that the row country benefits more from economic activity in the column country than vice versa.
net_spillover <- world_2000$get_net_spillover_matrix()
knitr::kable(net_spillover, digits = 4, caption = "Net Spillover Effects Matrix")
AUS | AUT | BEL | BRA | CAN | CHN | DEU | DNK | ESP | FIN | FRA | GBR | GRC | HKG | IND | IRL | ITA | JPN | KOR | MEX | NDL | PRT | SWE | TWN | USA | ROW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUS | 0.0000 | -0.0128 | 0.0161 | 0.0185 | -0.0666 | -0.2094 | -0.3254 | 0.0054 | -0.0169 | 0.1028 | -0.1678 | -0.3081 | 0.0373 | 0.2802 | 0.1332 | 0.0170 | -0.1683 | -0.4861 | 0.2846 | -0.0004 | 0.0029 | 0.0107 | -0.0414 | 0.6035 | -1.4584 | -1.6443 |
AUT | 0.0128 | 0.0000 | -0.1123 | -0.0255 | -0.0542 | -0.1683 | -3.4544 | 0.0801 | -0.1197 | 0.0000 | -0.5047 | -0.3707 | 0.1085 | 0.0251 | -0.0127 | 0.0583 | -0.7356 | -0.3207 | -0.0394 | -0.0077 | -0.2614 | 0.0610 | -0.0481 | -0.0705 | -0.8216 | -2.0690 |
BEL | -0.0161 | 0.1123 | 0.0000 | -0.1303 | -0.1564 | -0.2612 | -2.1978 | 0.3258 | -0.1575 | 0.0651 | -1.5795 | -1.3692 | 0.2773 | 0.1062 | 0.0709 | 0.0739 | -0.4425 | -0.5333 | -0.0801 | -0.0204 | -1.2560 | 0.2428 | -0.0370 | 0.0316 | -1.7541 | -2.2477 |
BRA | -0.0185 | 0.0255 | 0.1303 | 0.0000 | -0.0638 | -0.1074 | -0.3114 | 0.0543 | -0.0272 | 0.0703 | -0.1351 | -0.1205 | 0.0703 | 0.1400 | -0.0121 | 0.0602 | -0.1189 | -0.3053 | -0.0575 | 0.0248 | 0.1271 | 0.1395 | -0.0003 | -0.0139 | -1.1401 | -1.3336 |
CAN | 0.0666 | 0.0542 | 0.1564 | 0.0638 | 0.0000 | -0.1215 | -0.1589 | 0.0738 | -0.0062 | 0.0598 | -0.0793 | -0.3592 | 0.0755 | 0.4725 | 0.0422 | 0.2618 | -0.0790 | -0.3763 | 0.0299 | 0.0400 | 0.0914 | 0.0575 | 0.0410 | -0.0074 | -4.7295 | -0.9500 |
CHN | 0.2094 | 0.1683 | 0.2612 | 0.1074 | 0.1215 | 0.0000 | -0.0647 | 0.2008 | 0.1432 | 0.1481 | 0.0488 | 0.0196 | 0.1972 | 3.2840 | 0.1929 | 0.2366 | 0.0578 | -0.9235 | 0.0400 | 0.1713 | 0.2811 | 0.1269 | 0.0763 | -0.1745 | -0.4623 | -1.0555 |
DEU | 0.3254 | 3.4544 | 2.1978 | 0.3114 | 0.1589 | 0.0647 | 0.0000 | 2.0943 | 0.9054 | 1.1904 | 0.4801 | 0.1591 | 1.2163 | 0.6132 | 0.2229 | 0.9037 | 0.4094 | -0.2973 | 0.1949 | 0.2775 | 1.4774 | 1.4083 | 1.6150 | 0.8653 | -0.7504 | -1.2917 |
DNK | -0.0054 | -0.0801 | -0.3258 | -0.0543 | -0.0738 | -0.2008 | -2.0943 | 0.0000 | -0.1529 | -0.0126 | -0.6395 | -1.0682 | 0.0649 | 0.0549 | -0.0269 | 0.0893 | -0.5411 | -0.2305 | -0.0836 | -0.0077 | -0.5998 | 0.0259 | -0.8529 | -0.0162 | -0.7998 | -1.9055 |
ESP | 0.0169 | 0.1197 | 0.1575 | 0.0272 | 0.0062 | -0.1432 | -0.9054 | 0.1529 | 0.0000 | 0.0762 | -0.8883 | -0.4055 | 0.3551 | 0.1613 | -0.0049 | 0.2886 | -0.6444 | -0.2458 | -0.0200 | -0.0514 | 0.0455 | 2.4591 | 0.0988 | 0.1080 | -0.5864 | -1.8137 |
FIN | -0.1028 | 0.0000 | -0.0651 | -0.0703 | -0.0598 | -0.1481 | -1.1904 | 0.0126 | -0.0762 | 0.0000 | -0.4082 | -0.5926 | 0.1242 | 0.0389 | -0.0104 | 0.0738 | -0.3406 | -0.4668 | -0.0713 | -0.0079 | -0.2015 | 0.0461 | -0.3288 | -0.0692 | -0.9072 | -2.3061 |
FRA | 0.1678 | 0.5047 | 1.5795 | 0.1351 | 0.0793 | -0.0488 | -0.4801 | 0.6395 | 0.8883 | 0.4082 | 0.0000 | -0.1323 | 0.7620 | 0.4191 | 0.1152 | 0.8238 | 0.0105 | -0.2843 | 0.1093 | 0.0987 | 0.6057 | 1.0754 | 0.7666 | 0.1600 | -0.8321 | -1.2457 |
GBR | 0.3081 | 0.3707 | 1.3692 | 0.1205 | 0.3592 | -0.0196 | -0.1591 | 1.0682 | 0.4055 | 0.5926 | 0.1323 | 0.0000 | 0.5151 | 0.5883 | 0.3410 | 4.1994 | 0.0674 | -0.3685 | 0.0660 | 0.0746 | 1.0018 | 0.7635 | 1.0191 | 0.5895 | -1.0395 | -1.1629 |
GRC | -0.0373 | -0.1085 | -0.2773 | -0.0703 | -0.0755 | -0.1972 | -1.2163 | -0.0649 | -0.3551 | -0.1242 | -0.7620 | -0.5151 | 0.0000 | -0.0519 | -0.0550 | -0.0608 | -1.6529 | -0.2026 | -0.1080 | -0.0129 | -0.4536 | -0.0221 | -0.2269 | -0.0965 | -0.5765 | -3.1367 |
HKG | -0.2802 | -0.0251 | -0.1062 | -0.1400 | -0.4725 | -3.2840 | -0.6132 | -0.0549 | -0.1613 | -0.0389 | -0.4191 | -0.5883 | 0.0519 | 0.0000 | 0.0359 | 0.1734 | -0.6494 | -2.3815 | -1.3598 | -0.0428 | -0.3130 | 0.0171 | -0.0231 | -0.4679 | -3.2704 | -6.2372 |
IND | -0.1332 | 0.0127 | -0.0709 | 0.0121 | -0.0422 | -0.1929 | -0.2229 | 0.0269 | 0.0049 | 0.0104 | -0.1152 | -0.3410 | 0.0550 | -0.0359 | 0.0000 | 0.0811 | -0.0916 | -0.3318 | -0.0870 | 0.0157 | -0.0116 | 0.0606 | -0.0037 | -0.0025 | -0.5878 | -2.9286 |
IRL | -0.0170 | -0.0583 | -0.0739 | -0.0602 | -0.2618 | -0.2366 | -0.9037 | -0.0893 | -0.2886 | -0.0738 | -0.8238 | -4.1994 | 0.0608 | -0.1734 | -0.0811 | 0.0000 | -0.5089 | -0.6792 | -0.2360 | -0.0227 | -0.3643 | 0.0139 | -0.1881 | -0.1746 | -3.0383 | -2.1441 |
ITA | 0.1683 | 0.7356 | 0.4425 | 0.1189 | 0.0790 | -0.0578 | -0.4094 | 0.5411 | 0.6444 | 0.3406 | -0.0105 | -0.0674 | 1.6529 | 0.6494 | 0.0916 | 0.5089 | 0.0000 | -0.1670 | 0.0946 | 0.1297 | 0.1910 | 0.7478 | 0.3421 | 0.1276 | -0.4831 | -1.6802 |
JPN | 0.4861 | 0.3207 | 0.5333 | 0.3053 | 0.3763 | 0.9235 | 0.2973 | 0.2305 | 0.2458 | 0.4668 | 0.2843 | 0.3685 | 0.2026 | 2.3815 | 0.3318 | 0.6792 | 0.1670 | 0.0000 | 1.5110 | 0.4463 | 0.5557 | 0.3128 | 0.3421 | 1.7225 | -0.0264 | -0.4335 |
KOR | -0.2846 | 0.0394 | 0.0801 | 0.0575 | -0.0299 | -0.0400 | -0.1949 | 0.0836 | 0.0200 | 0.0713 | -0.1093 | -0.0660 | 0.1080 | 1.3598 | 0.0870 | 0.2360 | -0.0946 | -1.5110 | 0.0000 | 0.1797 | 0.0487 | 0.1268 | 0.0371 | 0.2292 | -1.5061 | -2.8225 |
MEX | 0.0004 | 0.0077 | 0.0204 | -0.0248 | -0.0400 | -0.1713 | -0.2775 | 0.0077 | 0.0514 | 0.0079 | -0.0987 | -0.0746 | 0.0129 | 0.0428 | -0.0157 | 0.0227 | -0.1297 | -0.4463 | -0.1797 | 0.0000 | 0.0109 | 0.0932 | -0.0369 | -0.0638 | -4.6417 | -0.6929 |
NDL | -0.0029 | 0.2614 | 1.2560 | -0.1271 | -0.0914 | -0.2811 | -1.4774 | 0.5998 | -0.0455 | 0.2015 | -0.6057 | -1.0018 | 0.4536 | 0.3130 | 0.0116 | 0.3643 | -0.1910 | -0.5557 | -0.0487 | -0.0109 | 0.0000 | 0.3416 | 0.1307 | 0.3147 | -1.7635 | -2.9057 |
PRT | -0.0107 | -0.0610 | -0.2428 | -0.1395 | -0.0575 | -0.1269 | -1.4083 | -0.0259 | -2.4591 | -0.0461 | -1.0754 | -0.7635 | 0.0221 | -0.0171 | -0.0606 | -0.0139 | -0.7478 | -0.3128 | -0.1268 | -0.0932 | -0.3416 | 0.0000 | -0.1161 | -0.0513 | -0.5927 | -2.1151 |
SWE | 0.0414 | 0.0481 | 0.0370 | 0.0003 | -0.0410 | -0.0763 | -1.6150 | 0.8529 | -0.0988 | 0.3288 | -0.7666 | -1.0191 | 0.2269 | 0.0231 | 0.0037 | 0.1881 | -0.3421 | -0.3421 | -0.0371 | 0.0369 | -0.1307 | 0.1161 | 0.0000 | -0.0189 | -0.9712 | -1.8780 |
TWN | -0.6035 | 0.0705 | -0.0316 | 0.0139 | 0.0074 | 0.1745 | -0.8653 | 0.0162 | -0.1080 | 0.0692 | -0.1600 | -0.5895 | 0.0965 | 0.4679 | 0.0025 | 0.1746 | -0.1276 | -1.7225 | -0.2292 | 0.0638 | -0.3147 | 0.0513 | 0.0189 | 0.0000 | -1.2744 | -2.5937 |
USA | 1.4584 | 0.8216 | 1.7541 | 1.1401 | 4.7295 | 0.4623 | 0.7504 | 0.7998 | 0.5864 | 0.9072 | 0.8321 | 1.0395 | 0.5765 | 3.2704 | 0.5878 | 3.0383 | 0.4831 | 0.0264 | 1.5061 | 4.6417 | 1.7635 | 0.5927 | 0.9712 | 1.2744 | 0.0000 | 0.7676 |
ROW | 1.6443 | 2.0690 | 2.2477 | 1.3336 | 0.9500 | 1.0555 | 1.2917 | 1.9055 | 1.8137 | 2.3061 | 1.2457 | 1.1629 | 3.1367 | 6.2372 | 2.9286 | 2.1441 | 1.6802 | 0.4335 | 2.8225 | 0.6929 | 2.9057 | 2.1151 | 1.8780 | 2.5937 | -0.7676 | 0.0000 |
The interpretation is straightforward:
For example, the USA has positive net spillover effects with every other country, indicating it generally benefits more from economic interactions with the world.
Key sectors analysis identifies sectors with strong backward and forward linkages in the multi-regional system:
world_2000$compute_key_sectors()
key_sectors_table <- world_2000$key_sectors[, c(
"country", "sector_name",
"power_dispersion", "sensitivity_dispersion", "key_sectors"
)]
knitr::kable(head(key_sectors_table), digits = 4, caption = "Key Sectors Analysis")
country | sector_name | power_dispersion | sensitivity_dispersion | key_sectors |
---|---|---|---|---|
AUS | Agriculture, Hunting, Forestry and Fishing | 0.9231 | 0.9372 | Non-Key Sector |
AUS | Mining and Quarrying | 0.8579 | 1.3972 | Strong Forward Linkage |
AUS | Food, Beverages and Tobacco | 1.1698 | 0.7489 | Strong Backward Linkage |
AUS | Textiles, leather and footwear | 1.1334 | 0.5495 | Strong Backward Linkage |
AUS | Pulp, paper, printing and publishing | 1.0508 | 0.7826 | Strong Backward Linkage |
AUS | Coke, refined petroleum and nuclear fuel | 1.2480 | 0.6396 | Strong Backward Linkage |
Key sectors are defined as those with above-average values in both power dispersion (backward linkages) and sensitivity dispersion (forward linkages). If both values exceed 1, the sector is classified as a key sector.
knitr::kable(
subset(key_sectors_table, key_sectors == "Key Sector"),
digits = 4,
caption = "World Key Sectors"
)
country | sector_name | power_dispersion | sensitivity_dispersion | key_sectors | |
---|---|---|---|---|---|
10 | AUS | Basic metals and fabricated metal | 1.1153 | 1.1820 | Key Sector |
19 | AUS | Transport and storage | 1.0424 | 1.3665 | Key Sector |
63 | BEL | Wholesale and retail trade | 1.0474 | 2.1698 | Key Sector |
65 | BEL | Transport and storage | 1.1411 | 1.5131 | Key Sector |
76 | BRA | Chemicals and chemicals products | 1.1417 | 1.2050 | Key Sector |
79 | BRA | Basic metals and fabricated metal | 1.0736 | 1.1132 | Key Sector |
119 | CHN | Textiles, leather and footwear | 1.3286 | 1.1093 | Key Sector |
120 | CHN | Pulp, paper, printing and publishing | 1.2516 | 1.0303 | Key Sector |
122 | CHN | Chemicals and chemicals products | 1.3459 | 1.9790 | Key Sector |
123 | CHN | Rubber and plastics | 1.4161 | 1.0886 | Key Sector |
125 | CHN | Basic metals and fabricated metal | 1.4585 | 2.4764 | Key Sector |
126 | CHN | Machinery | 1.3794 | 1.2067 | Key Sector |
127 | CHN | Electrical and optical equipment | 1.4747 | 1.6025 | Key Sector |
129 | CHN | Manufacturing, recycling | 1.2086 | 1.0453 | Key Sector |
130 | CHN | Electricity, gas and water supply | 1.2553 | 1.7450 | Key Sector |
132 | CHN | Wholesale and retail trade | 1.0484 | 2.1414 | Key Sector |
134 | CHN | Transport and storage | 1.0038 | 1.5373 | Key Sector |
145 | DEU | Chemicals and chemicals products | 1.0474 | 2.2578 | Key Sector |
146 | DEU | Rubber and plastics | 1.0202 | 1.0244 | Key Sector |
148 | DEU | Basic metals and fabricated metal | 1.0454 | 2.4121 | Key Sector |
149 | DEU | Machinery | 1.0253 | 1.3351 | Key Sector |
150 | DEU | Electrical and optical equipment | 1.0221 | 1.6899 | Key Sector |
151 | DEU | Transport equipment | 1.2205 | 1.5320 | Key Sector |
157 | DEU | Transport and storage | 1.0201 | 1.9335 | Key Sector |
180 | DNK | Transport and storage | 1.1129 | 1.1100 | Key Sector |
191 | ESP | Chemicals and chemicals products | 1.1491 | 1.1413 | Key Sector |
194 | ESP | Basic metals and fabricated metal | 1.1418 | 1.6170 | Key Sector |
203 | ESP | Transport and storage | 1.0117 | 1.4705 | Key Sector |
212 | FIN | Pulp, paper, printing and publishing | 1.0648 | 1.2643 | Key Sector |
217 | FIN | Basic metals and fabricated metal | 1.1967 | 1.1400 | Key Sector |
219 | FIN | Electrical and optical equipment | 1.1325 | 1.0286 | Key Sector |
235 | FRA | Pulp, paper, printing and publishing | 1.0948 | 1.0433 | Key Sector |
237 | FRA | Chemicals and chemicals products | 1.1763 | 1.4539 | Key Sector |
240 | FRA | Basic metals and fabricated metal | 1.0929 | 1.6608 | Key Sector |
242 | FRA | Electrical and optical equipment | 1.1437 | 1.1142 | Key Sector |
243 | FRA | Transport equipment | 1.3170 | 1.0230 | Key Sector |
260 | GBR | Chemicals and chemicals products | 1.0925 | 1.4232 | Key Sector |
263 | GBR | Basic metals and fabricated metal | 1.0614 | 1.4967 | Key Sector |
265 | GBR | Electrical and optical equipment | 1.1180 | 1.1481 | Key Sector |
268 | GBR | Electricity, gas and water supply | 1.1078 | 1.2209 | Key Sector |
269 | GBR | Construction | 1.0719 | 1.0766 | Key Sector |
274 | GBR | Financial intermediation | 1.0443 | 1.7971 | Key Sector |
302 | HKG | Food, Beverages and Tobacco | 1.1664 | 1.6876 | Key Sector |
328 | IND | Coke, refined petroleum and nuclear fuel | 1.0923 | 1.0242 | Key Sector |
329 | IND | Chemicals and chemicals products | 1.2440 | 1.2686 | Key Sector |
332 | IND | Basic metals and fabricated metal | 1.2139 | 1.4188 | Key Sector |
337 | IND | Electricity, gas and water supply | 1.0560 | 1.3664 | Key Sector |
341 | IND | Transport and storage | 1.0298 | 1.3372 | Key Sector |
364 | IRL | Transport and storage | 1.1478 | 1.0157 | Key Sector |
372 | ITA | Textiles, leather and footwear | 1.2000 | 1.0926 | Key Sector |
375 | ITA | Chemicals and chemicals products | 1.2347 | 1.2772 | Key Sector |
378 | ITA | Basic metals and fabricated metal | 1.1569 | 1.8881 | Key Sector |
379 | ITA | Machinery | 1.1753 | 1.0061 | Key Sector |
380 | ITA | Electrical and optical equipment | 1.1478 | 1.0112 | Key Sector |
383 | ITA | Electricity, gas and water supply | 1.0292 | 1.0177 | Key Sector |
387 | ITA | Transport and storage | 1.0400 | 1.7155 | Key Sector |
398 | JPN | Chemicals and chemicals products | 1.0680 | 2.0598 | Key Sector |
399 | JPN | Rubber and plastics | 1.0769 | 1.0362 | Key Sector |
401 | JPN | Basic metals and fabricated metal | 1.0922 | 2.2050 | Key Sector |
403 | JPN | Electrical and optical equipment | 1.0510 | 1.9391 | Key Sector |
404 | JPN | Transport equipment | 1.2852 | 1.3949 | Key Sector |
419 | KOR | Pulp, paper, printing and publishing | 1.2710 | 1.0932 | Key Sector |
420 | KOR | Coke, refined petroleum and nuclear fuel | 1.1157 | 1.2112 | Key Sector |
421 | KOR | Chemicals and chemicals products | 1.3239 | 1.8206 | Key Sector |
424 | KOR | Basic metals and fabricated metal | 1.3695 | 1.7999 | Key Sector |
426 | KOR | Electrical and optical equipment | 1.2945 | 1.3842 | Key Sector |
433 | KOR | Transport and storage | 1.0373 | 1.1349 | Key Sector |
467 | NDL | Chemicals and chemicals products | 1.1497 | 1.1829 | Key Sector |
498 | PRT | Electricity, gas and water supply | 1.0681 | 1.1445 | Key Sector |
511 | SWE | Pulp, paper, printing and publishing | 1.0473 | 1.0424 | Key Sector |
516 | SWE | Basic metals and fabricated metal | 1.0984 | 1.1055 | Key Sector |
525 | SWE | Transport and storage | 1.1136 | 1.9434 | Key Sector |
536 | TWN | Chemicals and chemicals products | 1.2469 | 1.2143 | Key Sector |
539 | TWN | Basic metals and fabricated metal | 1.2025 | 1.3962 | Key Sector |
541 | TWN | Electrical and optical equipment | 1.2224 | 1.1953 | Key Sector |
553 | USA | Agriculture, Hunting, Forestry and Fishing | 1.0012 | 1.2661 | Key Sector |
556 | USA | Textiles, leather and footwear | 1.0948 | 1.0618 | Key Sector |
560 | USA | Rubber and plastics | 1.0316 | 1.0854 | Key Sector |
563 | USA | Machinery | 1.0216 | 1.3285 | Key Sector |
565 | USA | Transport equipment | 1.1251 | 1.7447 | Key Sector |
578 | ROW | Food, Beverages and Tobacco | 1.0529 | 1.5380 | Key Sector |
579 | ROW | Textiles, leather and footwear | 1.1340 | 1.1697 | Key Sector |
580 | ROW | Pulp, paper, printing and publishing | 1.0485 | 1.2715 | Key Sector |
581 | ROW | Coke, refined petroleum and nuclear fuel | 1.1331 | 2.2760 | Key Sector |
582 | ROW | Chemicals and chemicals products | 1.0845 | 2.6993 | Key Sector |
583 | ROW | Rubber and plastics | 1.1301 | 1.1152 | Key Sector |
584 | ROW | Other non-metallic mineral | 1.0302 | 1.0963 | Key Sector |
585 | ROW | Basic metals and fabricated metal | 1.1366 | 3.2848 | Key Sector |
587 | ROW | Electrical and optical equipment | 1.1871 | 1.6445 | Key Sector |
588 | ROW | Transport equipment | 1.2550 | 1.0977 | Key Sector |
589 | ROW | Manufacturing, recycling | 1.0453 | 1.0622 | Key Sector |
Lastly, one can obtain single-region iom
objects from
the multi-regional system. The extract_country()
method
allows you to extract domestic input-output tables for individual
countries from the multi-regional system:
# Extract domestic economy for deutschland in the dataset
deutsch_iom <- world_2000$extract_country("DEU")
The extracted iom
object contains only the domestic
transactions for the specified country:
# Show a subset of the domestic intermediate transactions
knitr::kable(deutsch_iom$intermediate_transactions[1:8, 1:8],
digits = 0,
caption = paste("Deutschland Domestic Intermediate Transactions (first 8x8 sectors, millions USD)")
)
DEU_Agriculture, Hunting, Forestry and Fishing | DEU_Mining and Quarrying | DEU_Food, Beverages and Tobacco | DEU_Textiles, leather and footwear | DEU_Pulp, paper, printing and publishing | DEU_Coke, refined petroleum and nuclear fuel | DEU_Chemicals and chemicals products | DEU_Rubber and plastics | |
---|---|---|---|---|---|---|---|---|
DEU_Agriculture, Hunting, Forestry and Fishing | 1667 | 18 | 20853 | 247 | 285 | 10 | 158 | 160 |
DEU_Mining and Quarrying | 37 | 68 | 52 | 9 | 42 | 1201 | 145 | 12 |
DEU_Food, Beverages and Tobacco | 2655 | 21 | 9895 | 156 | 89 | 74 | 926 | 105 |
DEU_Textiles, leather and footwear | 5 | 0 | 4 | 279 | 4 | 1 | 16 | 22 |
DEU_Pulp, paper, printing and publishing | 74 | 74 | 1757 | 393 | 12433 | 117 | 1426 | 392 |
DEU_Coke, refined petroleum and nuclear fuel | 365 | 31 | 214 | 62 | 96 | 799 | 925 | 100 |
DEU_Chemicals and chemicals products | 806 | 68 | 544 | 871 | 847 | 292 | 6702 | 2698 |
DEU_Rubber and plastics | 147 | 56 | 874 | 190 | 470 | 62 | 1012 | 2122 |
# Show total production
knitr::kable(t(deutsch_iom$total_production[1, 1:12]),
digits = 0,
caption = paste("Deutschland Total Production (first 12 sectors, millions USD)")
)
DEU_Agriculture, Hunting, Forestry and Fishing | DEU_Mining and Quarrying | DEU_Food, Beverages and Tobacco | DEU_Textiles, leather and footwear | DEU_Pulp, paper, printing and publishing | DEU_Coke, refined petroleum and nuclear fuel | DEU_Chemicals and chemicals products | DEU_Rubber and plastics | DEU_Other non-metallic mineral | DEU_Basic metals and fabricated metal | DEU_Machinery | DEU_Electrical and optical equipment |
---|---|---|---|---|---|---|---|---|---|---|---|
44318 | 11871 | 117494 | 27820 | 77379 | 35496 | 110737 | 46673 | 35857 | 135138 | 142012 | 154388 |
You can then perform standard input-output analysis on the domestic economy:
deutsch_iom$compute_tech_coeff()$compute_leontief_inverse()$compute_multiplier_output()
knitr::kable(head(deutsch_iom$multiplier_output, 12),
digits = 4,
caption = paste("Deutschland Domestic Output Multipliers (first 12 sectors)")
)
sector | multiplier_simple | multiplier_direct | multiplier_indirect |
---|---|---|---|
DEU_Agriculture, Hunting, Forestry and Fishing | 1.6908 | 0.4146 | 1.2762 |
DEU_Mining and Quarrying | 1.7559 | 0.4657 | 1.2902 |
DEU_Food, Beverages and Tobacco | 2.0067 | 0.5981 | 1.4086 |
DEU_Textiles, leather and footwear | 1.6419 | 0.3961 | 1.2458 |
DEU_Pulp, paper, printing and publishing | 1.7893 | 0.4791 | 1.3102 |
DEU_Coke, refined petroleum and nuclear fuel | 1.7602 | 0.4592 | 1.3010 |
DEU_Chemicals and chemicals products | 1.7729 | 0.4766 | 1.2963 |
DEU_Rubber and plastics | 1.7117 | 0.4319 | 1.2798 |
DEU_Other non-metallic mineral | 1.7336 | 0.4434 | 1.2902 |
DEU_Basic metals and fabricated metal | 1.7580 | 0.4514 | 1.3065 |
DEU_Machinery | 1.7582 | 0.4518 | 1.3064 |
DEU_Electrical and optical equipment | 1.7421 | 0.4492 | 1.2928 |
Miller, Ronald E., and Peter D. Blair. Input-Output Analysis: Foundations and Extensions. 2nd ed.ย Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511626982.